CHANGING GEOGRAPHY OF GLOBAL LNG
IMPACTS ON AUSTRALIAN LNG

MARTIN WILKES
PRINCIPAL ADVISOR
RESOURCE INVESTMENT STRATEGY CONSULTANTS
MARCH 2014
INTRODUCTION

- Changing Global Outlook
- Demand / Supply Geography
- Supply Cost drivers
- Changes in approach
 - FLNG
 - (Re)-emergence of Mid-Scale LNG
- Comparisons of supply positions
2000-2010 SUPPLY & EXPECTATIONS
US LNG TURNAROUND

2000-2010
- US gas supply concerns, riding domestic gas price
- “Consensus” that US would become the 2nd largest importer of LNG
- Rush to build import facilities (9 in US)
- Gas price peaks above $13/mmBTU (2006-2008)
- Unconventional gas (Shale gas) takes off
- Gas price crashes to below $4/mmBTU
- Redundant import facilities

2010-on
- Domestic gas prices remain at historically low levels
- Asian prices at >$13/mmBTU
- Rush to build export facilities (20+ applications)

Henry Hub Natural Gas Spot Price

Source: U.S. Energy Information Administration
WHAT THE HEADLINE NUMBERS SAY

Initial Unit Cost of Development, $/TPA

Source: RISC analysis
IT’S NOT ALL ABOUT CAPEX

- Projects have significantly different Business models & Cost Profiles

Source: RISC analysis
PARTICULARLY WHEN YOU COMPARE TLC

Cum Cost $ million

Project Year

Source: RISC analysis
PARTICULARLY WHEN YOU COMPARE TLC

Source: RISC analysis
DISTANCE TO MARKET IS ALSO A FACTOR

- 7000 nm
- 3700 nm
- 3900 nm
- 9100 nm
ESTIMATED TRANSPORT COSTS TO JAPAN

Source: RISC analysis
LIQUIDS CONTENT IMPACTS REVENUE STREAMS

Assumes LNG sold at energy value parity to condensate

Source: RISC analysis
CHANGES IN APPROACH

FLNG

- Shell
 - Open water FLNG
 - 3.6MTPA
 - Largest ever floating structure
- Petronas
 - Mid-Scale FLNG
 - 1.2MTPA
 - Large Crude Tanker size

(Re) Emergence of Mid-Scale Developments

- E.g. LNG Limited
 - 0.5-1.5MTPA
 - Smaller footprint/plot
 - Industrial area location
ESTIMATED UNIT DELIVERY COSTS

Source: RISC analysis
PRICING MODELS – ARE THEY THAT DIFFERENT?
ASIA PACIFIC STRONG DEMAND GROWTH

Source: RISC analysis
SCHEDULE/TIMING/APPROVAL ISSUES

History suggest that very few LNG projects achieve initial suggested timelines:

East African (Mozambique) Projects - “Expected first LNG Sales in 2018”
- Still developing Petroleum regulatory regime
- Gov’t requirement for local benefits
- Potential for domestic obligations

Canada – “Producing by end 2013”
- Approvals
- Costs

USA
- Approvals (non-FTA and FERC/environmental)
- Currently 6 projects with non-FTA approvals, with limitations (Freeport)
- 1 project sanctioned (August 2012, Start-up ~end 2015)
- Panama Canal expansion delays
CONCLUSIONS – KEY POINTS

- Australian Capital Costs are high, but
 - Headline Numbers do not tell the whole story
 - Not all LNG projects are the same

- New approaches could/should bring savings and opportunities
 - FLNG, Mid-Scale

- Strong demand growth appears to be continuing
 - Buyers still active, and growing in number/diversity

- Competition from N America and E Africa
 - Canadian projects likely to face similar issues to Australian projects
 - American projects still face political uncertainty
 - E. African projects face all the above plus regulatory uncertainty.

- Currently unsanctioned Australian projects likely to face increased market complexity and price competition
 - Downward pressure on pricing in the medium term
 - Slower progress on sales agreements
 - Low political risk remains an advantage for Australian projects?
WHAT IS FLNG

FLNG - 3 different approaches

- **Shell**
 - Economies of Scale in open water FLNG
 - 3.6MTPA
 - Largest ever floating structure

- **Petronas**
 - Mid-Scale FLNG
 - 1.2MTPA
 - Large Crude Tanker size

- **Pacific Rubiales / Exmar** – Small Scale, sheltered water
 - 0.5MTPA
 - Jetty, Barge, Storage Tanker
FLNG – ADVANTAGES

- Significant scope reduction compared to traditional development
 - No pipeline or onshore facility
- Cheaper
- Minimal environmental impact

- Simpler project execution
- Build in a controlled environment
 - Shipyards have established processes, procedures, know-how and skills required.
- Faster delivery

- Allow development of smaller gas fields (previously stranded)
 - Key issue for resource owners

- Perceived as higher risk by buyers and financiers?
SHELL APPROACH – ECONOMIES OF SCALE

Prelude was the first sanctioned FLNG project, in May 2012. Due to come on production in second half of 2016.

- Large scale single train, 3.6MTPA (plus LPGs and Condensate)
- Largest floating structure ever built ~490mx75m
- Permanent mooring, on station for 25 years
- Shell LNG Technology (C3MR Process)
- Back to the future
 - Underlying use of “old” steam turbine technology
- Design one build many
 - Abadi, Sunrise, Browse (Calliance/Brecknock/Torosa)
PETRONAS APPROACH – KEEP IT SIMPLE

Kanowit was sanctioned in November 2012 but is due on production end 2015.

- Mid scale single train, 1.2MTPA
- Suezmax type tanker scale
- Permanent mooring
- APCI Nitrogen expansion technology
 - “New” (previously employed at back end of APCI-X process)
 - Less efficient than MR process
 - Gas Turbine driven
- Design one build many – 2nd FLNG project sanctioned for Rotan field
EXMAR/B&V APPROACH – SMALL & SIMPLE

Pacific Rubiales sanctioned the project mid-2012. Exmar will build own and operate the facility on behalf of PR. Project due to come on production end 2014/early 2015.

- Onshore gas field supply
- Single train. 0.5MTPA
- Barge mounted, tethered to Jetty
- Black and Veatch Prico Single Mixed Refrigerant process
 - Many in operation in Algeria, China
 - Gas Turbine driven
- Separate tanker based storage moored alongside
- Tolling arrangements
DIFFERENT SOLUTIONS TO ISSUES

Ship to Ship Transfers have been going on for several years.

- Utilise flexible cryogenic hoses
- Transfer rates of around 5000m³/hr
PERMANENT MOORING

- Typhoon Haiyan was possibly the strongest tropical storm ever experienced. 195mph/300+kph wind speeds
- Haiyan passed directly over the Galoc field
- Rubicon Intrepid is a 1981 built tanker 235m in length
 Converted to an FPSO on 2007
- Remained on-station throughout the passage of the storm

- Production interruption
 4 days
- Only minor damage
CONCLUSIONS AND KEY POINTS

- FLNG already has a number of different guises
- We anticipate further developments and adaptations
- Cost reductions probable as FLNG development becomes more “the norm”
- Break-even field size will reduce with reduced costs and offtake rates
- Still in the “Yet to be proven” category
 - Buyers and financiers need to see evidence of success from early developers to become more comfortable